

Ultrafast and ultrasmall: focusing on atoms

Linda Young Wksp on Ultrafast X-ray Science 2004 Apr 28-May 1,2004

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Collaborators

Atomic Physics Group

Bob Dunford, Dave Ederer, Elliot Kanter, Bertold Krässig, Steve Southworth, Linda Young

X-ray Optics: Eric Dufresne (MHATT-CAT)

Ultrafast Laser: David Reis, Matt DeCamp (U Michigan)
Eric Landahl (MHATT-CAT, APS)
Rob Crowell, Dave Gosztola (ANL)

Outline

- Motivation
- Background
 - threshold shift for valence photoionization
- First experiment
 - theshold shift for inner shell photoionization
 - technical challenges
 - experimental strategies
 - results so far
- Summary and outlook

X-ray facilities: toward ultrafast & ultraintense

Single bunch specs

10⁸ x-rays 87 ps

≈10⁷ x-rays 80 fs

10¹² x-rays 230 fs

Ultrafast x-ray science

Time-resolved EXAFS, NEXAFS, surface EXAFS

LUX website

Time-resolved x-ray diffraction

Laser-pump/x-ray probe techniques central Short pulses automatically yield high intensities $1 \text{ mJ}/100 \text{ fs/}(0.1 \text{ mm})^2 \approx 10^{14} \text{ W/cm}^2 \approx 3 \text{ V/Å}$

Ultrafast laser/x-ray interactions: isolated atoms

- X-ray photoionization is fairly well understood in the weak-field limit
- Understand changes to x-ray processes in presence of strong laser fields
- Theoretical predictions

ponderomotive shift in threshold -> absorption spectrum free-free transitions in continuum -> electron spectra

Ponderomotive shift

photon energy

Electron satellites

electron energy

Ponderomotive Shift: photodetachment in Cl

Shift threshold by U_p : $U_p = e^2 E^2 / 4m \square^2$

 $U_p \approx (9.33 \times 10^{-14} \text{eV}) \text{ I(W/cm}^2) \square^2 (\square \text{m})^2$

M.D. Davidson, J. Wals, H.G. Muller, H.B. van Linden van den Heuvell PRL 71, 2192 (1993)

IR: 15 mJ, 13 ns, 146 μ m $I_{1064} = 4.5 \times 10^9 \text{ W/cm}^2$ $U_p = 0.00045 \text{ eV}$

UV: 14μJ, 3.4 ns, 36 μm

Overlap is critical !! Well-defined optical field \Box dressing beam \Box >> probe \Box 10^{14} W/cm² @ 800 nm \Box U_p = 6 eV

Evolution of Kr 1s-edge structure

- Naked atom: I=0
- Dressed atom: I<I_{sat}
- Ion spectrum: I>I_{sat}

For Kr: 800 nm $I_{sat} \approx 2 \times 10^{14} \text{ W/cm}^2$

X-ray processes in presence of strong fields

Technical Challenges

Laser intensity

MHATT-CAT Ti:sapphire laser ≈800±10 nm, ≈100 fs, ≈1 mJ/pulse

To achieve 10¹⁴ W/cm² Short pulse (100 fs) focus to ≈100 μm Long pulse (100 ps) focus to ≈3 μm

- Overlap spatial and temporal
 X-rays: 87 ps, 2 x 3 μm
- Count rates

MHATT-CAT Ti:Sapphire Laser System

Oscillator: 88 MHz, 1nJ, 50 fs Amplifier: 1 kHz, 1mJ, 50 fs

Focus x rays with Kirkpatrick-Baez mirror pair

- four point bender and trapezoidal mirror substrate is used to create an elliptical shape
- a pair is used for vertical and horizontal focusing
- focused spot size of ≈1 x 1µm is possible with short working distances
- "optimal" spot size 2 x 3 μm calculated for our working distance

Design by Peter Eng GeoCARS, U Chicago

KBs in action

Alignment Strategy

• Focus x rays to center of chamber

Locate x-ray centroid with BGO

Overlap focused laser

-rough: BGO crystal

-fine: in-vacuum cross hairs

Simultaneous overlap of laser & x-rays

Scan 10 µm cross-hair

X-rays: monitor current from electrically isolated cross-hair

Laser: monitor scattered light

pixel sum from a selected

region on CCD camera

X-ray flux coincident with 1 kHz laser

Only 1/5440 of x-ray flux is coincident with laser (overlap with singlet (1/20 total flux) @ 272 kHz)

Chopper selects singlet x-ray pulses @ 2.66 kHz Laser @ 887 Hz : 1 laser-on vs 2 laser-off

0.51 mm slot 50.8 mm diameter 2.45µs open time

Count rates in Kr atomic beam

Monochromatic x-rays @ 14.3 keV: $\approx 10^{13}$ /s (2x10⁶/pulse)

Focused x-rays ≈ 10¹²/s

Laser frequency ≈ 887 Hz

 $I_{x-ray}(laser-on) \approx 2 \times 10^8/s$

 $\Box = 18 \text{ kb}, \ n \approx 10^{12} \text{ cm}^{-3}, \ L \approx 0.3 \text{cm}$

Measurement of Kr 1s Near Edge Spectrum

- Ion or x-ray yield to measure absorption spectrum
- Measure threshold structure point by point
- Cross-correlation: laser+ x-rays via ion chargestate spectroscopy

Spectrum: 50 points x 10 min/point 500 minutes

"Stability" of laser/x-ray overlap

Spatial overlap drifts ≈30 microns/4 hrs
Beam position stabilization required

Temporal overlap was stable

Vertical Wire Scan

Summary and outlook

- Goal: Understand changes to x-ray processes in presence of strong-laser fields
- Technical issues solved
 - Overlap
 - Dressing intensity (in short pulse mode)
 - Count rate
 - Stability of overlap
- Unique capabilities and personnel associated with APS Sector 7
- Next run June 2004

